Teaching a humanoid robot to draw 'Shapes'

نویسندگان

  • Vishwanathan Mohan
  • Pietro G. Morasso
  • Jacopo Zenzeri
  • Giorgio Metta
  • V. Srinivasa Chakravarthy
  • Giulio Sandini
چکیده

The core cognitive ability to perceive and synthesize ‘shapes’ underlies all our basic interactions with the world, be it shaping one’s fingers to grasp a ball or shaping one’s body while imitating a dance. In this article, we describe our attempts to understand this multifaceted problem by creating a primitive shape perception/synthesis system for the baby humanoid iCub. We specifically deal with the scenario of iCub gradually learning to draw or scribble shapes of gradually increasing complexity, after observing a demonstration by a teacher, by using a series of self evaluations of its performance. Learning to imitate a demonstrated human movement (specifically, visually observed end-effector trajectories of a teacher) can be considered as a special case of the proposed computational machinery. This architecture is based on a loop of transformaElectronic supplementary material The online version of this article (doi:10.1007/s10514-011-9229-0) contains supplementary material, which is available to authorized users. V. Mohan ( ) · P. Morasso · J. Zenzeri · G. Metta · G. Sandini Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genova, Italy e-mail: [email protected] P. Morasso e-mail: [email protected] J. Zenzeri e-mail: [email protected] G. Metta e-mail: [email protected] G. Sandini e-mail: [email protected] V.S. Chakravarthy Department of Biotechnology, Indian Institute of Technology, Chennai, India e-mail: [email protected] tions that express the embodiment of the mechanism but, at the same time, are characterized by scale invariance and motor equivalence. The following transformations are integrated in the loop: (a) Characterizing in a compact, abstract way the ‘shape’ of a demonstrated trajectory using a finite set of critical points, derived using catastrophe theory: Abstract Visual Program (AVP); (b) Transforming the AVP into a Concrete Motor Goal (CMG) in iCub’s egocentric space; (c) Learning to synthesize a continuous virtual trajectory similar to the demonstrated shape using the discrete set of critical points defined in CMG; (d) Using the virtual trajectory as an attractor for iCub’s internal body model, implemented by the Passive Motion Paradigm which includes a forward and an inverse motor model; (e) Forming an Abstract Motor Program (AMP) by deriving the ‘shape’ of the self generated movement (forward model output) using the same technique employed for creating the AVP; (f) Comparing the AVP and AMP in order to generate an internal performance score and hence closing the learning loop. The resulting computational framework further combines three crucial streams of learning: (1) motor babbling (self exploration), (2) imitative action learning (social interaction) and (3) mental simulation, to give rise to sensorimotor knowledge that is endowed with seamless compositionality, generalization capability and body-effectors/task independence. The robustness of the computational architecture is demonstrated by means of several experimental trials of gradually increasing complexity using a state of the art humanoid plat-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot

This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...

متن کامل

Teaching Humanoids to Imitate 'Shapes' of Movements

Trajectory formation is one of the basic functions of the neuromotor controller. In particular, reaching, avoiding, controlling impacts (hitting), drawing, dancing and imitating are motion paradigms that result in formation of spatiotemporal trajectories of different degrees of complexity. Transferring some of these skills to humanoids allows us to understand how we ourselves learn, store and i...

متن کامل

Analytical Dynamic Modelling of Heel-off and Toe-off Motions for a 2D Humanoid Robot

The main objective of this article is to optimize the walking pattern of a 2D humanoid robot with heel-off and toe-off motions in order to minimize the energy consumption and maximize the stability margin. To this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. Then, using these trajectories and the inverse kinematics, the position tra...

متن کامل

Mechatronic Hand Design with Integrated Mechanism in Palm for Efficiency Improve of the Finger.

One of the most important case in humanoid robot designing is hand, which it consider as an country development. High percentage of robot work quality depend on hand capability. A robot function increase with hand movement. One of important movement in artificial hand capability relate to fingers lateral movement. This case has more effect intake of special objects such as round shape or moving...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Auton. Robots

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2011